Etude génétique des truites de la Roya Rapport final de janvier 2008

 ${\it Analyses statistiques et interpr\'etation: Patrick \ Berrebi}$

Analyses moléculaires: Sophie Dubois

1. Introduction

Dans le cadre de l'étude d'impact de la demande de renouvellement de la concession de l'aménagement de Breil sur Roya, il avait été mis en évidence un certain **déficit des populations piscicoles de la Roya** en amont de la queue de la retenue de Breil (station 5) et de la partie amont du tronçon court-circuité (station 6, TCC amont), les populations piscicoles du secteur "TCC aval" étant considérées comme équilibrées. La qualité de l'eau ne semblait pas en cause (bonne qualité, malgré les rejets de la station d'épuration obsolète de Breil, en début de tronçon court-circuité, station 6), ni le débit réservé.

Pour tenter d'évaluer l'importance du facteur "empêchement de la libre circulation" sur les déficits observés (le barrage de Breil est infranchissable à la montaison), et tenter de quantifier l'importance relative des autres facteurs potentiels (crues, pression/gestion halieutique), EDF a engagé des suivis des populations de truites de la Roya dans le secteur de Breil, complétant un suivi déjà engagé par ailleurs plus en amont au niveau de l'aménagement de Fontan dans le cadre de la cellule "débit réservé".

Ce suivi est couplé à l'utilisation d'un modèle de dynamique de population de la truite (MODYPOP), qui a pu être « calé » avec les données du suivi Fontan pour lequel on dispose de nombreuses années de données. Cette utilisation de MODYPOP a pour but de comprendre les différents phénomènes qui gèrent les populations de truites.

Appliqué dans le secteur du tronçon court-circuité de Fontan, le modèle a permis de mettre en exergue les épisodes hydrologiques déstructurant. L'application de MODYPOP dans le TCC de Breil (station 6) montre, contrairement au TCC de Fontan, une population déstructurée, dont l'origine ne peut être encore identifiée : d'une part le nombre de frayères est très faible par rapport au nombre de géniteurs supposés présents et d'autre part le nombre d'alevins issus de ce faible recrutement n'est pas en adéquation avec le nombre d'adultes présents.

Parmi les différentes hypothèses évoquées, une mauvaise représentation du rôle des alevinages dans la dynamique de la population pourrait être à l'origine d'une sous estimation des juvéniles par le modèle.

Une façon d'avancer dans l'explication du phénomène observé peut passer par la génétique des populations, capable de révéler la part effective des poissons de pisciculture au sein de la population naturelle, l'alevinage étant une des explications possibles.

C'est pourquoi il a été décidé de poursuivre le suivi, en complétant l'acquisition d'informations, notamment par la réalisation d'une étude génétique sur la population de truites de la Roya, de Saint Dalmas à Breil.

Plus concrètement, cette étude génétique a pour but d'identifier :

- la proportion de truites résultants de l'alevinage (domestiques) de celles qui se sont reproduites in situ (sauvages);
- des différences éventuelles dans cette proportion domestique/sauvage entre tronçons;
- la concordance génétique entre alevins et adultes quand l'échantillonnage le permet.

2. Echantillonnage

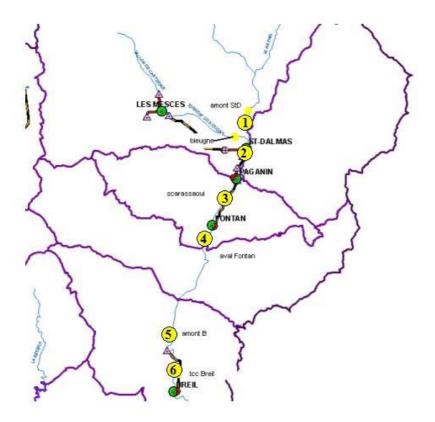


Figure 1. Stations de pêche (ronds jaunes). Ronds verts : centrales; triangles mauves: prises d'eau/barrages.

D'amont en aval, les points de pêche sont:

- (1) St Dalmas amont: secteur amont de Saint Dalmas, non aménagé;
- (2) Usine EDF: aval de Saint Dalmas;
- (3) Scarassaoui: tronçon court-circuité de Fontan (niveau Viaduc de Scarassaoui)
- (4) Fontan aval: 1 km à l'aval centrale de Fontan;
- (5) **Breil amont**: amont retenue de Breil (9 km en aval de la précédente)
- (6) TCC aval: tronçon court-circuité de Breil

Les chiffres et les noms en gras seront ceux qui serviront dans ce rapport pour désigner ces stations.

3. Analyses moléculaires

Les analyses moléculaires ont été effectuées par Sophie Dubois, ingénieure à l'Université Montpellier 2, à l'Institut des Sciences de l'Evolution, Université Montpellier 2.

Les microsatellites sont des marqueurs hypervariables de l'ADN nucléaire sensibles à l'isolement. Ainsi, si deux populations de truites se trouvent séparées pendant une longue période, la composition génétique tend à diverger sous l'effet de la dérive (aléatoire) et de la sélection (adaptation au milieu, si les deux populations ont subi des conditions écologiques divergentes). Il s'agit donc de déceler les variants présent dans chaque échantillon, découlant d'isolements. Toute différence de fréquence correspond à un isolement.

Techniquement, un très petit bout de nageoire (2x2mm) est dégradé à la protéinase K et l'ADN libéré stabilisé par la méthode du Chelex. Ces extraits d'ADN font ensuite l'objet d'amplifications (*Polymerase Chain Reaction* ou PCR) pour synthétiser certaines zones de l'ADN : les microsatellites.

Ces zones sont composées de la répétition (de 5 à 50 fois...) de 2 ou 4 nucléotides et c'est le nombre de répétitions qui varie à cause des mutations.

Après PCR, les fragments d'ADN amplifiés sont mis à migrer sous l'action de l'électricité dans des gels d'acrylamide. Les molécules se décalent en fonction de leur longueur. Un scanner de gels permet enfin de "lire" les gels, c'est à dire de donner la composition en allèle (variants d'un même marqueur) de chaque truite : c'est le génotypage. Chaque génotype est composé de deux allèles, celui provenant de la mère et celui provenant du père.

Dans notre cas, huit locus microsatellites sont analysés : Mst85, Ssa197, Sfo1, SsoSL311, Oneµ9, Omm1105, Mst543 et Omm21DIAS. Pour les comparaisons avec des données déjà disponibles (la référence "pisciculture"), les deux derniers locus ne sont pas utilisés car non analysés sur les échantillons domestiques anciens.

Les analyses consistent donc à produire dans un premier temps un tableau (ou matrice) de génotypes (8 locus x 225 truites; voir annexe) qui sera ensuite traité statistiquement pour l'interprétation.

4. Analyse statistique

L'analyse statistique de la composition génétique de ces échantillons passe par diverses étapes.

Etape 1 - L'analyse statistique la plus adaptée à l'interprétation globale des données est l'AFC (Analyse Factorielle des Correspondances). Cette analyse multidimensionnelle effectuée par le logiciel GENETIX, permet de positionner chaque truite sur un graphique en fonction de la totalité de sa composition génétique. Ainsi, dans la figure 2 ci-dessous, plus deux points seront rapprochés, plus les truites qu'ils représentent seront génétiquement semblables. Ainsi, les divers types génétiques formeront des "nuages" distincts et reconnaissables.

Etape 2 - La différentiation entre les populations échantillonnées, bien que déjà illustrée par l'étape 1, doit être statistiquement testée. Le Fst décrit la différenciation entre deux échantillons (Fst=0: populations génétiquement identiques). Ce paramètre permet un calcul de probabilité (permutations) et donc l'estimation d'un niveau de significativité des différences observées.

Etape 3 - Un autre paramètre permet de tester l'équilibre d'une population. Le Fis teste essentiellement la panmixie, c'est à dire le fait que tout individu de la population se croise au hasard avec tout autre. Cette panmixie est perturbée par divers facteurs comme les introductions, l'existence de sous-unités ou d'espèces distinctes, un effectif de reproducteur trop faible (consanguinité)...

5. Résultats et interprétations

5.1. Analyse multidimensionnelle: distinction entre truites sauvages et domestiques

2. AFC (Analyse Factorielle des Correspondances) résumant la structure génétique globale de l'échantillonnage et basée sur 6 locus (voir §3.). Des truites domestiques du Vaucluse ont été ajoutées (triangles bruns) pour polariser l'image: domestiques (atlantiques) à droite et sauvages (méditerranéennes) à gauche.

On observe deux types d'échantillons: Fontan aval, Breil amont et TCC aval sont très majoritairement à gauche donc fortement sauvages; St Dalmas amont, Usine EDF et Scarassaoui font la jonction entre sauvages et domestiques: leur composition génétique est très mélangée.

Un premier résultat peut être proposé en fonction de la figure 2:

les 3 stations aval (Fontan, Breil, TCC) sont presque entièrement peuplées de pures truites sauvages homogènes avec seulement quelques exceptions :

- Fontan aurait environ 2 hybrides et une domestique sur 35 soit environ 7% d'introgression;
- Breil aurait 2 hybrides et 4 domestiques sur 50 truites analysées soit 10%;
- TCC aurait 2 hybrides et 2 domestiques soit 6%;

les 3 stations amont (Scarassaoui, usine EDF, St Dalmas) sont fortement mélangées, de façon quasi homogène, proches du 50/50% (estimé plus précisément plus bas).

Ces premiers résultats montrent une rupture nette de part et d'autre de Fontan avec des hybrides surtout au dessus.

5.2. Estimation des introgression par la méthode des allèles diagnostiques

Il s'agit de donner à chaque allèle (variant génétique élémentaire, voir §3.) un statut de marqueur des truites sauvages, marqueur des truites domestiques (trouvés uniquement chez les truites sauvages ou domestiques respectivement) ou marqueur neutre (trouvés indifféremment partout).

Figure

Ce calcul aboutit à ces résultats, plus précis:

- station 1 (amont de Saint Dalmas) 58% d'introgression domestique

- station 2 (usine EDF)
- station 3 (Viaduc de Scarassaoui)
- station 4 (1km aval centrale de Fontan)
- station 5 (amont retenue de Breil)
- station 6 (tronçon court-circuité de Breil)
4%

Nous retrouvons là la dichotomie de part et d'autre de Fontan: 29 à 58% de formes domestiques en amont et 2 à 5% en aval.

5.3. Y-a-t-il continuité génétique le long de la Roya

Nous avons vu qu'il y a une très forte discontinuité de part et d'autre de Fontan.

A présent, le calcul des Fst permet de dire, en comparant deux à deux toutes les stations, si on peut assimiler deux échantillons à un seul, ce qui signifierait que les truites qui les constituent se sont reproduites ensemble.

Le tableau 1, ci dessous, montre que seuls les échantillons TCC et Breil sont assimilables à une seule population. Toutes les autres paires d'échantillons sont statistiquement différents (5000 permutations). On remarque cependant que les valeurs de Fst (et donc le niveau de différenciation inter-échantillons) peuvent être classés en deux groupes:

- les valeurs inférieures à 5% à l'intérieur des groupes Fontan+Breil+TCC et St Delmas+Usine EDF+Scarassaoui;
- les valeurs au dessus de 5% (et jusqu'à 14%) opposent justement ces deux groupes.

FST	Usine ED	Scarassa	Fontan a	Breil am	TCC av
StDalmas Usine ED Scarassa Fontan a Breil am	0.01731	0.02377 0.00809	0.15032 0.13750 0.09296	0.12286 0.10554 0.07201 0.01335	0.12340 0.10733 0.07382 0.01348 -0.00103
% val < StDalmas Usine ED Scarassa Fontan a Breil am	99.96	100.00 97.62	100.00 100.00 100.00	100.00 100.00 100.00 99.86	100.00 100.00 100.00 99.88 39.02

Tableau 1. Calculs des Fst de Wright 1951 (en réalité, valeurs de l'estimateur de Weir et Cockerham, 1984) basés sur 8 locus microsatellites. La matrice triangulaire du haut donne les valeurs calculées de Fst. La matrice inférieure donne les probabilités que le Fst soit différent de zéro (c'est à dire que les deux échantillons comparés soient significativement différents). Les valeurs en rouge sont significatives.

5.4. Les alevins de l'année sont-ils les descendants des adultes de la même station?

L'application du programme de modélisation démographique MODYPOP dans le TCC de Breil (station 6) montre une population déstructurée, dont l'origine ne peut être encore identifiée: d'une part le nombre de frayères est très faible par rapport au nombre de géniteurs supposés présents et d'autre part le nombre d'alevins issus de ce faible recrutement n'est pas en adéquation avec le nombre d'adultes présents.

Parmi les différentes hypothèses évoquées, une mauvaise représentation du rôle des alevinages dans la dynamique de la population pourrait être à l'origine d'une sous estimation des juvéniles par le modèle.

Nous avons déjà vu que cet échantillon était entièrement composé de truites sauvages, rendant peu probable que les alevins ne soient pas descendants des adultes présents dans la même station. Afin de confirmer cette dernière hypothèse, des Fst ont été calculés entre alevins (0+) et truites âgées de plus de 1 an (1+), station par station (seules les stations 4, 5 et 6 sont concernées).

Il a fallu dans un premier temps séparer les 0+ des autres stades. Pour cela, les tailles des truites échantillonnées dans les trois station aval ont été placées dans un graphe présentant l'effectif cumulé de chaque classe de taille de 1cm (figure 3). En fonction de la courbe multimodale obtenue, il a été décidé de considérer les 0+ comme ayant moins de 12cm et les classes d'âge au dessus comme ayant une taille de plus de 17cm. Les truites de 12 à 17cm sont considérées comme d'âge incertain et retirées de l'analyse (seulement 9 truites sur un total de 135).

Le tableau 2 montre qu'il n'y a pas de discontinuité entre 0+ et truites plus âgées, station par station. Comme ce test peut être peu puissant à cause du morcellement des effectifs, un Fst a été calculé et testé entre 0+ et 1+ sur les trois échantillons cumulés. Dans ce cas, les Fst sont très faibles et non significatifs: il n'y a donc pas de différence génétique entre alevin et adultes à l'aval de Fontan..

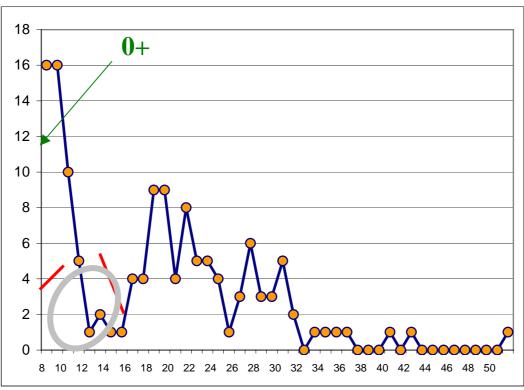


Figure 3. Effectif de chaque classe de taille (cm par cm) des trois échantillons aval (Fontan, Breil, TCC). Les traits rouges indiquent les tailles qui ont été considérées comme correspondants aux alevins de l'année (0+, <12cm), suivi de la zone incertaine entre 0+ et 1+ (ellipse grise, 12-17cm), suivi des tailles des 1+ et plus âgés (>17cm).

FST	Breil 0+	TCC 0+	Fontan 1+	Breil 1+	TCC 1+
Fontan 0+ Breil 0+ TCC 0+ Fontan 1+ Breil 1+	0.02276	0.01859 0.01070	0.00004 0.02217 0.00221	0.00235 0.00229 -0.00369 0.00038	$\begin{array}{c} 0.01198 \\ -0.00022 \\ -0.00414 \\ \hline 0.00347 \\ -0.00736 \end{array}$
% val < Fontan 0+ Breil 0+ TCC 0+ Fontan 1+ Breil 1+	97.02	94.16 91.02	56.12 99.56 66.52	64.06 70.04 30.70 57.36	90.42 53.26 26.34 78.28 3.24

Tableau 2. Calcul des Fst (voir la légende du tableau 1) sur les trois échantillons aval, pour lesquels un nombre suffisant d'alevins de l'année (moins de 12cm, indiqués par 0+) et d'individus plus âgés (plus de 17cm, indiqués par 1+) on été échantillonnés. Les deux classes d'âge sont opposées, station par station (valeurs soulignée), sur la base de 8 locus microsatellites, ne montrant jamais de différence génétique significative. Les trois comparaisons significatives (en rouge) sont simplement le reflet des différences montrées dans le tableau 1. Les effectifs des sous-échantillons sont: 0+Fontan=10; 0+Breil=20; 0+TCC=17; 1+Fontan=20; 1+Breil=25; 1+TCC=30.

Il reste cependant la possibilité que l'anomalie soit due à l'existence de deux types de truites sauvages dans la même zone. Pour cela, le test de panmixie (croisement au hasard de tous les habitants d'une station) doit révéler ce genre de phénomène puisque toute structuration intra-station empêche la panmixie.

Le chapitre suivant montre que tous les échantillons, incluant les plus à l'aval, sont à l'équilibre panmictique. Il n'y a qu'un type de truite dans les stations aval.

5.5. Panmixie

Le test de panmixie permet de nous mettre sur la voie d'une structure cachée. En effet, le paramètre Fis est sensible au "mélange de souches", c'est à dire au mélange de truites issues de reproductions distinctes (comme l'échantillonnage simultané de truites nées en pisciculture et d'autres en rivières, ou l'échantillonnage de truites sauvages locales mêlées à des truites dévalantes et donc nées plus en amont).

Le test a été fait sur les 6 échantillons et aucun n'a montré de déséquilibre panmictique significatif. Dans chaque tronçon, les truites se croisent donc au hasard.

6. Discussion

6.1. Analyse antérieures

D'autres stations de la Roya ont été analysées dans le passé à la demande du Parc du Mercantour.

Il y a eu les 2 échantillons en septembre 2000 sur la Maglia (affluent droit de la Roya, s'y jetant juste en amont de Breil) qui n'ont été analysés que par les marqueurs allozymiques (impossible de croiser les résultats avec les microsatellites) et qui ont montré 18% de présence domestique en amont (Vallon de Fontanas) et 52% en aval, plus près de la Roya... un résultat comparable aux trois stations amont de la présente étude.

Il y a eu aussi les 5 stations pêchées en août 2005, en tête de bassin de la Roya, dans le Parc. Là, la présence domestique était de 95 à 99%... il s'agit donc de peuplement entièrement artificiels, sans doute dûs à l'absence de truites en amont au moment de l'alevinage de pisciculture.

Ces analyses anciennes ne nous apportent rien dans notre recherche actuelle.

6.2. La question du déséquilibre démographique observé

Comme dit en introduction, il a été mis en évidence un certain déficit des populations piscicoles de la Roya en amont de la queue de la retenue de Breil (station 5) et de la partie amont du tronçon court-circuité (station 6). La qualité de l'eau et le débit réservé ne semblait pas en cause.

L'application de MODYPOP dans le TCC de Breil (station 6) démontre une population déstructurée : nombre de frayères très faible par rapport au nombre de géniteurs supposés présents et nombre d'alevins élevé par rapport au nombre d'adultes présents.

Parmi les différentes hypothèses évoquées, une mauvaise représentation de l'mportance des alevinages dans la dynamique de la population pourrait être à l'origine d'une sous estimation des juvéniles par le modèle.

L'analyse génétique a montré que:

- dans les stations aval (et spécialement les stations 5 et 6), il n'y a quasiment aucune présence domestique: nous avons là des populations quasiment sauvages, ou du moins méditerranéennes (on ne peut exclure le déversement de truites méditerranéennes domestiques);
- ces stations aval sont en équilibre panmictique (Fis), excluant tout apport artificiel d'alevins nés ailleurs.

Le déséquilibre démographique est donc à chercher au niveau écologique: les mesures de terrain sontelles représentatives de l'écologie moyenne de chaque tronçon? L'impact des mortalités accidentelles dont la (sur)pêche a-t-il été correctement pris en compte dans le modèle?

6.3. Une image structurée de la Roya, image des activités humaines

L'activité humaine, intense autour de la Roya, a provoqué une structuration artificielle du peuplement de truites le long du cours d'eau. Dans la zone étudiée, de l'amont de St Dalmas à l'amont de Breil, il y a des obstacles infranchissables (à la montaison) entre les stations (2) et (3) et entre (5) et (6). De plus ces secteurs ne sont pas gérés par les mêmes sociétés de pêche (3 sociétés au total). En amont, la Bieugne, affluent de la Roya au niveau de St Dalmas, est fortement alevinée.

La rupture observée se situe de part et d'autre de Fontan (entre les stations 3 et 4), stations éloignées d'environ 3km l'une de l'autre. Si nous prenons le village de Fontan comme point zéro, la proportion de truites domestiques monte à 30% à 2km plus en amont (station 3), 40% à 6km (station 2) et 60% à 7km (station 1). A l'aval de Fontan, la présence domestique augmente légèrement (mais il n'est pas sûr que ces différences soient significatives) avec 2% à 1km à l'aval (station 4) et 5% à 5 et 7km à l'aval (stations 5 et 6).

Notons que cette polarité, avec plus de truites domestiques à l'amont, atteint son maximum en tête de bassin où les 5 stations du Mercantour présentaient en 2005 entre 95 et 99% de formes domestiques. Les obstacles physiques n'expliquent pas la position pivot de Fontan puisque les barrages infranchissables à la remontée se situent entre les stations 2 et 3, puis à l'aval, entre les stations 5 et 6.

6.4. Truites naturelles ou sauvages: gestion piscicole

Les trois stations aval sont peuplées de truites méditerranéennes à près de 95%. Les trois stations amont sont fortement mélangées avec des truites atlantiques domestiques.

Quel rapport y a-t-il entre ces observations et la gestion piscicole:

- à l'amont, la Bieugne, affluent droit se jetant dans la Roya entre les stations 1 et 2, est fortement alevinée par la Société de Pêche de Tende.

Dans cette zone, suite à une pollution sur 2 kms de rivière, en 2005, des alevinage ont été faits en souche méditerranéenne (pisciculture fédérale 06) afin de pratiquer une gestion "patrimoniale".

- à l'aval, les stations Scarassaoui et Fontan aval (stations 3 et 4) sont gérés par la Société de Pêche de Fontan et les stations Breil amont et TCC aval sont gérées par la Société de Pêche de Breil.

Les Sociétés de Fontan et de Breil repeuplent à partir d'alevins et de truitelles d'automne issues de la pisciculture de Roquebillière. Cette pisciculture entretient plusieurs souches. Celle qui a pu être analysée par allozymes présentait 16% de gènes atlantiques et 84% de gènes méditerranéens. Il est donc possible qu'une part des truites méditerranéennes de la zone aval analysée soit d'origine méditerranéenne domestique. Il est possible de le savoir, mais une autre étude incluant un échantillon de chaque souche de Roquebillière est nécessaire.

En conclusion, la structure génétique observée tout a long de la Roya entre Tende et Breil ne s'explique pas uniquement par la gestion actuelle de ces zones par les AAPPMA et la Fédération Départementale 06, ni par l'existence de barrages hydroélectriques plus ou moins hermétiques à la montaison.

Il semble que cette structure soit le résultats de l'histoire de la gestion du cours d'eau durant le siècle dernier. La polarisation domestique-amont/méditerranéen-aval (sauvage et/ou domestique) et l'observation d'un cline de présence domestique croissant vers l'amont (jusqu'au Parc où les peuplements sont entièrement domestiques) montrent bien qu'il n'y a pas d'isolement fort et que la Roya est une entité structurée mais cohérente. Il est probable que les peuplements domestiques d'altitude expliquent en partie la polarité observée.

Il faut aussi se féliciter que la gestion de type patrimoniale appliquée dans la zone aval n'a pas compromis son peuplement presque purement méditerranéen, situation rare dans la région.

Fait à Montpellier le 3 janvier 2008

Annexe: tableau complet des génotypes des truites de la Roya

		au complet de				1					
N° labo	N° terrain		date			SsoSL-311					Omy21DIAS
T11617		Fontan (aval)									
T11618	A2	Fontan (aval)				136136					
T11619	A3	Fontan (aval)				136136					
T11620	A4	Fontan (aval)	7/8/07	161161	135139	136136	197197	118170	154198	148152	114116
T11621	A5	Fontan (aval)	7/8/07	147159		136136	0				126126
T11622	A6	Fontan (aval)	7/8/07	159161	139139	136136	197197	158170	146154	156156	116120
T11623	A7	Fontan (aval)	7/8/07	147161	139139	136136	197197	162170	134162	152154	122126
T11624	A8	Fontan (aval)	7/8/07	159161	139139	136136	197197	162172	178194	154156	110126
T11625	A9	Fontan (aval)	7/8/07	159161	139143	136138	197197	134162	154194	156156	116120
T11626		Fontan (aval)				136136				148154	124126
T11627	A11	Fontan (aval)	7/8/07	147159	135191	136136	197197	134170	198262	0	114126
T11628	A12	Fontan (aval)	7/8/07	161161	131143	136138	197197	162170	162166	152152	122126
T11629	A13	Fontan (aval)	7/8/07	147161	139139	136136	197197	158170	134154	152152	114132
T11630	A14	Fontan (aval)	7/8/07	159161	139139	136136	197197	170172	162190	152156	126126
T11631	A15	Fontan (aval)	7/8/07			136136					
T11632		Fontan (aval)				136136					
T11633	A17	Fontan (aval)				136136					
T11634	A18	Fontan (aval)				136136					
T11635		Fontan (aval)				136136					
T11636		Fontan (aval)				136136					
T11637		Fontan (aval)	7/8/07			136136					
T11638		Fontan (aval)	7/8/07			130136					
T11639		Fontan (aval)	7/8/07			136154					
T11640		Fontan (aval)				136136					
T11641		Fontan (aval)				136136					
T11642		Fontan (aval)				136136					
T11643		Fontan (aval)				136136					
T11644		Fontan (aval)	7/8/07			136138					
T11645		Fontan (aval)	7/8/07			136136					
T11646		Fontan (aval)	7/8/07			136136					
T11647		Fontan (aval)	7/8/07			136136					
T11648		Fontan (aval)									
T11649		Fontan (aval)				136136					
T11650		Fontan (aval)				136136					
T11651		Fontan (aval)				132136					
T11652		Breil (amont)				136138					
T11653		Breil (amont)				136136					
T11654		Breil (amont)				136136					
T11655		Breil (amont)				136136					
T11656		Breil (amont)				136136					
T11657		Breil (amont)				136136					
T11658		Breil (amont)				136150					
T11659		Breil (amont)	7/8/07			136136					
T11660		Breil (amont)				136136					
T11661		Breil (amont)				136138					
T11662		Breil (amont)				134140					
T11663		Breil (amont)				136136					
T11664		Breil (amont)				136136					
T11665	A49	Breil (amont)	7/8/07	161167	139191	128136	19/197	118162	146162	152152	122126

N° labo	N° terrain	station	date	Mst85	Ssa197	SsoSL-311	Oneu9	Sfo1	Omm1105	MST 543	Omv24DIAS
T11666	A50	Breil (amont)	7/8/07			136138					
T11667	A51	Breil (amont)	7/8/07			128136					
T11668	A52	Breil (amont)	7/8/07			136136					
T11669	A53	Breil (amont)	7/8/07			136136					
T11670	A54	Breil (amont)				136138					
T11671	A55	Breil (amont)				136136					
T11672	A56	Breil (amont)				132144					
T11673	A57	Breil (amont)				136136					
T11674	A58	Breil (amont)				136136					
T11675	A59	Breil (amont)				136166					
T11676	A60	Breil (amont)				128136					
T11677	A61	Breil (amont)				136146					
T11678	A62	Breil (amont)				138138					
T11679	A63	Breil (amont)				136136				0	114126
T11680	A64	Breil (amont)				136138					_
T11681	A65	Breil (amont)				136136					
T11682	A66	Breil (amont)				136138					
T11683	A67	Breil (amont)	7/8/07			140160					
T11684	A68	Breil (amont)				136136					
T11685	A69	Breil (amont)				130136					
T11686	A70	Breil (amont)				136136					
T11687	A71	Breil (amont)				136138					
T11688	A72	Breil (amont)	7/8/07	159159	0	136136	197197	164172	162190	148156	124126
T11689	A73	Breil (amont)	7/8/07	147161	131131	136138	197197	136164	162190	152156	120126
T11690	A74	Breil (amont)	7/8/07	159159	139139	130136	197209	118170	162170	152156	126126
T11691	A75	Breil (amont)	7/8/07	159167	139139	138156	197197	170170	198210	154156	110126
T11692	A76	Breil (amont)	7/8/07	159159	135139	136136	197197	164172	186214	152156	124124
T11693	A77	Breil (amont)	7/8/07	159159	139191	138138	197197	162162	162198	152152	114126
T11694	A78	Breil (amont)	7/8/07	161171	135191	142154	197197	158164	134134	152156	124126
T11695	A79	Breil (amont)	7/8/07	159159	139139	136138	0	114170	134210	122122	122126
T11696	A80	Breil (amont)	7/8/07	147161	131191	130138	197197	158162	150162	124154	108120
T11697	A81	Breil (amont)	7/8/07	159159	139179	136148	197197	164170	138178	152152	114126
T11698	A82	Breil (amont)	7/8/07	159161	131139	138156	197197	158172	134198	152156	106114
T11699	A83	Breil (amont)	7/8/07	159159	139139	136136	197201	162170	134138	152154	110114
T11700	A84	Breil (amont)	7/8/07	159159	139139	136136	197197	164168	146194	154156	116120
T11701	A85	Breil (amont)	7/8/07	161161	139139	148152	197197	158162	154194	0	112114
T11702	A86	TCC (aval)			139139		0			152156	
T11703	A87	TCC (aval)	7/8/07	159159	127139	136136	197197	118170	142162	152152	114126
T11704	A88	TCC (aval)				136136					
T11705	A89	TCC (aval)			139139		0	162162	166238	152152	124126
T11706	A90	TCC (aval)	7/8/07	161171	139139	130136	0	114130	134186	152154	110126
T11707	A91	TCC (aval)				124136				152156	116126
T11708	A92	TCC (aval)				136136					114114
T11709	A93	TCC (aval)				136136					
T11710	A94	TCC (aval)				136138					
T11711	A95	TCC (aval)				136138					
T11712	A96	TCC (aval)			135139		0			152156	
T11713	A97	TCC (aval)				136138					
T11714	A98	TCC (aval)				136138					
T11715	A99	TCC (aval)	7/8/07	159159	139167	136180	197197	162170	138146	148154	126126

N° labo	N° terrain	station	date	Mst85	Ssa197	SsoSL-311	Oneu9	Sfo1	Omm1105	MST 543	Omy21DIAS
T11716		TCC (aval)			139139						-
T11717		TCC (aval)			191191						
T11718		TCC (aval)	7/8/07		139139						
T11719		TCC (aval)	7/8/07		139139						
T11720		TCC (aval)	7/8/07		0			116170			
T11721		TCC (aval)	7/8/07		139139						
T11722		TCC (aval)			139139						
T11723		TCC (aval)			139139						
T11724		TCC (aval)		147147				170170			
T11725		TCC (aval)			127135	150156	197201	116170	162190	152152	116120
T11726		TCC (aval)			139139						
T11727		TCC (aval)			139179						
T11728		TCC (aval)			175187						
T11729	A113	TCC (aval)	7/8/07	0	0	136138	197197	162170	134198	152152	114126
T11730		TCC (aval)			131139						
T11731		TCC (aval)			139191						
T11732		TCC (aval)			131187						
T11733	A117	TCC (aval)	7/8/07	159161	139139	128136	197197	160162	134154	148156	116126
T11734	A118	TCC (aval)	7/8/07		187191						
T11735	A119	TCC (aval)	7/8/07	159167	139139	136138	197197	164170	138190	152156	122124
T11736	A120	TCC (aval)	7/8/07	159161	139139	136136	201201	128172	170206	124148	114116
T11737	A121	TCC (aval)	7/8/07	159161	143179	128136	197207	162170	190262	152156	110124
T11738	A122	TCC (aval)	7/8/07	159159	139139	136138	197197	162166	162162	152152	116118
T11739	A123	TCC (aval)	7/8/07	147159	139143	136136	197197	162170	138206	148164	122126
T11740	A124	TCC (aval)	7/8/07	159161	139139	136136	197197	162170	138142	152152	124126
T11741	A125	TCC (aval)	7/8/07	159159	139139	136136	197197	164166	146206	148156	112120
T11742	A126	TCC (aval)	7/8/07	161167	139139	136136	197197	118158	166194	124156	120122
T11743	A127	TCC (aval)	7/8/07	157161	139143	136138	197197	162164	166194	148152	116126
T11744	A128	TCC (aval)	7/8/07	161161	0	128136	197197	162170	170190	152156	110126
T11745	A129	TCC (aval)	7/8/07	161167	123139	128136	197197	110172	174218	148156	120122
T11746	A130	TCC (aval)	7/8/07	159159	127139	136156	197201	118162	162174	156156	114116
T11747	A131	TCC (aval)	7/8/07	159159	139139	136136	197197	166170	190206	156156	112114
T11748	A132	TCC (aval)	7/8/07	159161	139179	136136	197197	114170	154186	152156	114126
T11749		TCC (aval)			131139						
T11750		TCC (aval)			139191						
T11751		TCC (aval)			143179						
T11752	B1	St Dalmas			127135						
T11753	B2	St Dalmas			123143						
T11754	B3	St Dalmas			127179						
T11755	B4	St Dalmas			135135						
T11756	B5	St Dalmas			135143						
T11757	B6	St Dalmas			139139						
T11758	B7	St Dalmas			123151						
T11759	B8	St Dalmas			127139						
T11760	B9	St Dalmas			127135						
T11761		St Dalmas			131175						
T11762	B11	St Dalmas			123127					128148	
T11763	B12	St Dalmas			127135						
T11764		St Dalmas			127139						
T11765	B14	St Dalmas	21/8/07	147173	127135	128156	197201	118120	146146	138152	118118

N° la	bo	N° terrain	station	date	Mst85	Ssa197	SeoSI -311	Oneu9	Sfo1	Omm1105	MST 543	Omy21DIAS
T117		B15	St Dalmas							266298		-
T117		B16	St Dalmas							238286		
T117		B17	St Dalmas							178286		
T117		B18	St Dalmas							218298		
T117		B19	St Dalmas							142286		
T117		B20	St Dalmas			135139				294298		
T117		B21	St Dalmas							142294		
T117		B22	St Dalmas							146286		
T117		B23	St Dalmas							278278		
T117		B24	St Dalmas							146150		
T117		B25	St Dalmas							262290		
T117		B26	St Dalmas							294302		
T117		B27	St Dalmas							234286		
T117		B28	St Dalmas			127179				210262		
T117		B29	St Dalmas						122122		0	112118
T117		B30	St Dalmas							150286	-	
T117		B31	Scarassaoui									
T117		B32	Scarassaoui									
T117		B33	Scarassaoui									
T117		B34	Scarassaoui									
T117		B35	Scarassaoui									
T117		B36	Scarassaoui									
T117		B37	Scarassaoui									
T117		B38	Scarassaoui									
T117		B39	Scarassaoui									
T117		B40	Scarassaoui									
T117		B41	Scarassaoui									
T117		B42	Scarassaoui							218262		
T117	'94	B43	Scarassaoui	21/8/07	165165	139143	130136	197201	118118	150162	148152	108110
T117	'95	B44	Scarassaoui	21/8/07	147171	131139	130136	197199	130170	142214	132156	126138
T117	'96	B45	Scarassaoui	21/8/07	165167	127139	130136	197197	118152	230282	138152	114124
T117	97	B46	Scarassaoui	21/8/07	159159	139143	136136	0	132152	142150	152156	106126
T117	'98	B47	Scarassaoui	21/8/07	147167	131139	130136	197199	118128	138258	154156	106108
T117	'99	B48	Scarassaoui	21/8/07	147159	131131	154156	197201	128142	146286	148152	106112
T118	300	B49	Scarassaoui	21/8/07	147159	0	136136	197205	124158	238302	142156	106124
T118	801	B50	Scarassaoui	21/8/07	147161	127127	130138	197197	118122	148218	128148	106122
T118	802	B51	Scarassaoui	21/8/07	147161	139139	140140	199199	116122	138138	152158	122126
T118	803	B52	Scarassaoui	21/8/07	147171	139139	130136	197197	118152	262294	152156	106120
T118	804	B53	Scarassaoui	21/8/07	161171	127139	128136	197201	122132	294294	146148	106114
T118	805	B54	Scarassaoui	21/8/07	159161	131139	132138	197201	116132	142142	126148	114114
T118	806	B55	Scarassaoui	21/8/07	161161	127139	128130	197201	116162	186186	128128	106108
T118	807	B56	Scarassaoui	21/8/07	167179	127143	136152	201201	132152	134150	154154	106112
T118	808	B57	Scarassaoui	21/8/07	157157	139179	130136	0	130152	0	150152	122124
T118	809	B58	Scarassaoui	21/8/07	147159	123139	136136	197201	118130	130274	128128	120126
T118	310	B59	Scarassaoui	21/8/07	159161	131131	136136	197199	118132	302302	148148	106114
T118	311	B60	Scarassaoui	21/8/07	157159	139139	136136	201201	138162	278298	148148	110112
T118	312	B71	Usine EDF	22/8/07	159167	131191	130136	197201	118162	142142	148148	106112
T118	313	B72	Usine EDF	22/8/07	159179	127139	138148	201201	116130	162218	142142	112120
T118	314	B73	Usine EDF	22/8/07	157167	131139	124136	197201	118122	318318	126148	106112
T118	315	B74	Usine EDF	22/8/07	157157	139179	136136	197201	152162	146190	0	0

N° Ia	abo	N° terrain	station	date	Mst85	Ssa197	SsoSL-311	Oneµ9	Sfo1	Omm1105	MST 543	Omy21DIAS
T11	816	B75	Usine EDF	22/8/07	159165	123139	136136	201201	140158	174226	146152	106118
T11	817	B76	Usine EDF	22/8/07	159159	139143	136148	197197	118132	134146	146148	106106
T11	818	B77	Usine EDF	22/8/07	147159	131143	136142	193207	152162	174194	138138	120122
T11	819	B78	Usine EDF	22/8/07	157167	171179	136158	199207	130162	146278	150154	106126
T11	820	B79	Usine EDF	22/8/07	147167	139139	138158	197201	116162	142278	138148	124126
T11	821	B80	Usine EDF	22/8/07	147161	123143	140140	197201	130132	142270	148148	114114
T11	822	B81	Usine EDF	22/8/07	147173	131143	128138	197201	116134	150150	156156	114120
T11	823	B82	Usine EDF	22/8/07	173175	127139	136148	201201	118128	142266	126152	106108
T11	824	B83	Usine EDF	22/8/07	159167	131139	154190	197209	162162	254254	156156	106124
T11	825	B84	Usine EDF	22/8/07	159159	127127	128130	185197	134152	142294	128148	106120
T11	826	B85	Usine EDF	22/8/07	159167	127139	128128	201207	116116	182234	148148	106106
T11	827	B86	Usine EDF	22/8/07	147147	139143	128136	197197	136150	0	148148	106120
T11	828	B87	Usine EDF	22/8/07	159179	127139	140156	201201	136162	290302	142142	118122
T11	829	B88	Usine EDF	22/8/07	147159	127143	128130	197207	116136	142142	128148	106122
T11	830	B89	Usine EDF	22/8/07	147171	131143	150152	197201	132162	278286	0	102106
T11	831	B90	Usine EDF	22/8/07	159167	127143	130136	197201	136162	142150	0	108112
T11	832	B91	Usine EDF	22/8/07	147159	131139	136142	201201	136152	142146	126142	118128
T11	833	B92	Usine EDF	22/8/07	147171	127131	136148	197201	132136	150162	142142	112122
T11	834	B93	Usine EDF				136138					
T11	835	B94	Usine EDF				138156					
T11	836	B95	Usine EDF	22/8/07	147167	127131	128132	197201	128170	150162	152152	108120
T11		B96	Usine EDF				136136					
T11		B97	Usine EDF				130154					
T11		B98	Usine EDF				136142					
T11		B99	Usine EDF				128128					
T11	841	B100	Usine EDF	22/8/07	147147	131135	130136	199201	136152	262302	124124	106122